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The current carrying steady state of the pinned flux line lattice created by magnetic field is described. We
calculate analytically the critical current for the case of the matching field �when the number of vortices is
equal to that of the pinning centers� using a simple variational method in the framework of Ginzburg-Landau
equations. The vortex cores are deformed and displaced in the current carrying state. Displacement of the
centers of the vortices with respect to pinning centers and structure of these states are determined.
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I. INTRODUCTION

The great interest in the problem of magnetic flux pinning
in type-II superconductors is associated with its relevance to
technological applications of superconductivity. An impor-
tant challenge in applications of type-II superconductors is
achieving optimal critical currents under given magnetic
fields. This requires preventing depinning of Abrikosov vor-
tices during formation of the resistive state under the applied
current. Random pointlike pinning centers naturally appear
due to imperfections of lattice structure or chemical disorder.
However, in technologically important materials critical cur-
rent due to intrinsic pinning is not strong enough, especially
at high magnetic fields. One of the main reasons is destruc-
tive competition of pinning centers, as demonstrated by the
collective pinning theory.1 It was predicted theoretically2 and
confirmed experimentally3–5 that when pinning centers are
arranged into a periodic array commensurate with the Abri-
kosov lattice, the critical current increases dramatically. The
effect is maximized when the filling fraction f �defined as a
ratio between number of vortices to that of the pinning cen-
ters� is 1, when one pinning center traps a single vortex.
Additional vortices are “interstitial” and can be depinned
easily, thus significantly reducing the critical current.6 Re-
cently there has been an advance in the fabrication method of
the periodic arrays of pinning sites.7 The arrays with trian-
gular, square, and rectangular geometries have been fabri-
cated using either microholes or blind holes,3 magnetic dots,4

and columnar defects.5

Theoretically these systems were studied, using mostly
numerical methods, within a model of interacting two-
dimensional �2D� points representing vortices subject to pin-
ning potential.8,9 This approach is appropriate to describe
weak magnetic fields and sparse pinning arrays, so that the
structure of the vortex core can be ignored. Recently, how-
ever, the arrays are fabricated on the nanometer scale, and
the range of fields applied continuously increases. Therefore
the distribution of the order parameter becomes of impor-
tance and one has to resort to a more fundamental approach.
Since microscopic approach is not practical, the only avail-
able tool is the Ginzburg-Landau �GL� phenomenological
approach.1 Within this approach the periodic pinning prob-
lem was tackled numerically by Priour and Fertig.10 They

demonstrated that the pinning centers deform the vortex core
and, moreover, that the current carrying state for a large
square-shaped pinning center displaces a vortex in the direc-
tion perpendicular to the persistent current. Unfortunately,
only one vortex and one pinning center were simulated on
the square sample with area carrying just one unit of flux
�0= hc

2e , while the rest of the vortex-pinning center pairs were
represented by periodic boundary conditions duplicating the
“squares.” It is well known that in an isotropic supercon-
ductor the intervortex repulsion �which is rather strong at
elevated fields� forces them to form a hexagonal vortex
lattice.1 The square lattice will therefore be in conflict with
these forces and the question is whether this is an important
factor in the pinning problem. In addition, it is clear that in
order to maximize the critical current the pinning center ar-
ray should be hexagonal with one pinning center per vortex
�the matching field� and this is the situation we consider in
the present analytical calculation.

In this paper we employ the GL equations for the order
parameter � in order to determine the persistent current and
to describe the structure of the pinned vortex matter in su-
perconducting films at matching field �f =1�. The sample is
considered to be infinite in directions perpendicular to ap-
plied magnetic field, so that the vortex-vortex interactions
are fully accounted for. Current carrying states of the flux
lattice at matching field and hexagonal array of pinning cen-
ters are characterized by displacement of the vortices with
respect to that of the pins and by deformations of the vortex
cores. A variational method exploiting the two lowest Lan-
dau levels �LLLs� is used to determine the displacement and
to calculate the critical current at the matching field for rect-
angular pinning centers of arbitrary aspect ratios. The depen-
dence of the persistent current on the displacement is linear
at small displacements and approaches its maximum �the
critical current� at about half of the intervortex distance. The
coefficient in the linear part, the Labusch constant, is calcu-
lated.

II. GINZBURG-LANDAU EQUATIONS WITH A PERIODIC
PINNING ARRAY

Let us consider a type-II superconducting film of width s
under constant magnetic field H perpendicular to the film.
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Static magnetic properties of the superconductor are de-
scribed by the GL Gibbs energy1 as a function of the order
parameter � and vector potential A,

F��,A� = s� dr� �2

2m�
�D��2 − a��r����2

+
b�

2
���4 +

1

8�
�B − H�2� . �1�

Here D	�+i�2� /�0�A denotes the covariant derivative,
where �0=hc /e�, e�=2�e� is the unit of flux, B=��A is the
magnetic induction, and m� is the effective mass. Assuming
that the ratio �ef f 	�ef f /�	1, where �ef f =2�2 /s is the ef-
fective penetration depth and � is the coherence length, mag-
netization is by a factor 1 /�2 smaller than the field. Conse-
quently for magnetic fields few times larger than Hc1, one
uses B
H. The vector potentials are chosen in the symmet-
ric gauge,

Ax = − 1
2By, Ay = 1

2Bx . �2�

The pinning centers are located at points ra �2D vectors
r= �x ,y� will be denoted by bold letters� �see Fig. 1�. When
pinning is absent, the coefficient a��r�=
�Tc−T� in Eq. �1� is
uniform. The static free energy is minimized by a hexagonal
Abrikosov lattice of vortices with cores, with primitive vec-
tors of hexagonal lattice

a1 = a��1

2
,
�3

2

, a2 = a��1,0� , �3�

where the lattice spacing is a�=21/23−1/4��0 /B. Pinning is
represented by an inhomogeneous coefficient

a��r� = 
�Tc − T� − Tc�
a

U�r − ra� , �4�

where U are “potentials” around pinning centers ra. As dis-
cussed above, an interesting configuration corresponds to a
hexagonal periodic array located at

ra = n1a1 + n2a2 �5�

commensurate with the static Abrikosov lattice at matching
field.

The superconducting current density has a form

J =
ie��

2m�
���D� − �D��� . �6�

In the pinned state considered in the present paper electric
field is absent outside of very narrow shelf near the
boundaries1 �of the width of order of ��. Therefore there is no
normal current present in the bulk of the sample, so that J
represents both the persistent and the diamagnetic �namely,
the one circling around the vortex cores� components of the
supercurrent density. The persistent current, which originates
from the normal electron’s current in the leads, is seen as an
imbalance between the currents on two sides of vortices �see
Fig. 2�. We will be mostly interested in the sample average of
the current density �assumed to be along the y direction �see
Fig. 1��,

J =
1

LxLy
� d2rJy�r� 	 �Jy� . �7�

Only the persistent current component contributes to it.
Below the coherence length �=� / �2m�
Tc�1/2 will be

used as a unit of length r→r /� and Hc2=�0 /2��2 as a unit
of magnetic field, h=B /Hc2. The scaled order parameter
�=2−1/2� /�0, where ��0�= �
Tc /b��1/2, so that the dimen-
sionless energy can be written in the following form:

fGL =� d2r�f2 + f4 + fp� , �8�

f2 = ���−
D2

2
−

1 − t

2
�� , �9�

FIG. 1. �Color online� A 2D array of pinning centers commen-
surate with hexagonal Abrikosov lattice �superfluid density is
shown� at matching field. All the currents are diamagnetic, no per-
sistent current present.

j

FIG. 2. �Color online� A persistent current carrying state. Vorti-
ces are displaced with respect to the pinning centers. The current
density J, in addition to the diamagnetic component, has a rela-
tively small persistent current component. A variational order pa-
rameter configuration includes two lowest Landau levels.
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f4 = 1
2 �����2, �10�

fp = �
a

V�r − ra���� , �11�

where t=T /Tc and V�r�=U�r /�� /
 is dimensionless pinning
potential. It is convenient to present the persistent current in
the units of the depairing current Jd=cHc2 /2���2.The di-
mensionless of the current density is defined by

J = Jdj �12�

with

j =
i

2
���D� − ��D���� . �13�

Below the energy Eq. �8� is minimized with fixed average
current �Eq. �7�� first by using a simple variational proce-
dure.

III. VARIATIONAL METHOD FOR PERSISTENT
CURRENT CARRYING PINNED STATES

A. Qualitative description and symmetry considerations

Neglecting the vortex creep due to thermal fluctuations on
the mesoscopic scale, the vortex matter in the presence of
pinning can be in one of the two stationary states, either a
pinned �static� vortex lattice or a flux flow. Both states gen-
erally carry the electric current; however the nature of con-
ductivity is totally different. In the pinned state the transport
is dissipatedness due to the “persistent” superconducting cur-
rent and electric field vanishes inside the sample. When the
persistent current in the pinned state approaches a critical
magnitude Jc, vortices are depinned and the flux flow ensues.
In the flux flow regime the electric field does penetrate the
bulk of the superconductor and Ohmic �Bardeen-Stephen�
dissipation arises.

In the absence of persistent current at the matching field
the Abrikosov lattice coincides �“matches”� with the pinning
array. In particular vortex centers �zeros of the order param-
eter� will coincide with the pinning centers at ra �see Fig. 1�.
Persistent current not only displaces the “vortices” with re-
spect to the pinning centers �by the Lorentz force� but also
significantly deforms their shape10 �see Fig. 2�. At small per-
sistent current densities the displacement of vortices should
be small enough, so that linear elasticity theory applies. For
increasing current densities nonlinear effects appear and
grow. Eventually at a critical current density the static dis-
torted Abrikosov lattice becomes unstable to depinning. The
critical current and the order parameter configuration at
given current density depend both on the strength and on the
shape of the pinning center.

Free energy of a pinned system in which there is one
vortex per pinning site �f =1� �Eq. �8�� has a hexagonal lat-
tice translational symmetry

r → r + n1a1 + n2a2, �14�

where the lattice vectors were defined in Eq. �3�. In addition
it has a rotation by � /6 symmetry. In the presence of the

persistent current �see Fig. 2�, the configuration of the order
parameter in principle might not be symmetric �namely, a
spontaneous symmetry breaking takes place�. However nu-
merical simulations we made demonstrate that in the present
case spontaneous symmetry breaking of the translational
symmetry �Eq. �14�� does not occur. This greatly constrains
possible solutions and allows a simple variational procedure.
The rotational hexagonal symmetry is broken spontaneously
down to reflection symmetry with respect to the supercurrent
direction.

B. Why a lowest Landau level order parameter configuration
cannot carry net supercurrent in a pinned state

Let us consider a simple case of short-range pinning po-
tential and then generalize to arbitrary shape of the pinning
center. It is clear that with such a choice of pinning potential
a properly normalized LLL state,

��r� =� ah


A
�0�r� ,

�0�r� = 31/8�h�
i

ei�l2/2 exp�i�−
h

2
xy +

��2l + 1�
a

�x −
a

4

�

−
h

2
�y −

��2l + 1�
ah

�2� , �15�

where a=a� /�, ah= �1− t−h� /2, is still an approximate Abri-
kosov solution of the GL equation for zero net supercurrent.
It seems natural to try to look for periodic configurations of
the order parameter describing the current carrying states
among the other LLL states. It is well known that an LLL is
uniquely defined by locations of its zeros, so that possible
candidates are displaced configurations, �0�r+u�. It turns out
that this naive assumption fails since generally these states
have vanishing persistent current. Indeed it can be shown8

that in any LLL state the current density is proportional to
curl of superfluid density

Ji � �ij� j���2, �16�

so that an integral over unit cell vanishes due to periodicity.
Here �ij is an antisymmetric tensor in two dimensions. Con-
sequently to describe states carrying the persistent supercur-
rent, higher Landau levels are necessary.

C. Trial functions

The simplest such states involve, in addition to the LLL,
just a shifted first Landau level,

� =� ah


A
�c0�0�r + u� + ic1�1�r + u�� , �17�

where
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�1�r� = 21/231/8h�
l
�y −

��2l + 1�
ah

�ei�l2/2 exp�i�−
h

2
xy

+
��2l + 1�

a
�x −

a

4

� −

h

2
�y −

��2l + 1�
ah

�2� . �18�

Functions �N are normalized by ���0�r��2�=1. Variational co-
efficients c0 and c1 are assumed to be real for the following
reasons. First the overall phase does not influence gauge in-
variant quantities and second the supercurrent is directed
along the y axis only when the relative phase is � /2. Sub-
stituting Eq. �17� into the current density defined in Eq. �13�
and using

Dy�0 = � �

�y
+ i

h

2
x
�0 = −�h

2
�1, �19�

one obtains

�jy� =
ah


A

�2hc1c0. �20�

This means that the persistent current appears due to a mix-
ture of LLL and the first LL �see Fig. 2�. Similarly when
higher LLs are present the current will get contributions due
to mixture of �N and �N+1 only �“a selection rule” �see Ref.
8 for description��. Therefore higher Landau levels N�1
will contribute very small corrections because, as mentioned
above, the Abrikosov LLL solution is dominant. We there-
fore should minimize the free energy �Eq. �8�� for a set of
variational parameters c0, c1, and u.

IV. STRUCTURE OF THE PINNED STATE AND CRITICAL
CURRENT FOR VARIOUS PINNING CENTERS

A. Minimization of energy

The variational energy �averaged over the unit cell� has
the quadratic in order parameter, quartic and the pinning con-
tributions defined in Eq. �8�,

�f2� =
ah


A
��h − ah�c1

2 − ahc0
2� , �21�

�f4� =
ah

2

2
A
2 ��c0

2��0�2 + c1
2��1�2 + ic0c1��0

��1 − �0�1
���2�

=
ah


A
�ahc0

4

2
+

ah
1

2
A
c1

4 + 2
ah
12


A
c0

2c1
2� , �22�

�fp� =
ah


A
�c0

2�0 + c1
2�1 + 2c0c1�12� , �23�

where �¯ � is an average over sample �equivalently over the
unit cell due to translational symmetry discussed above�. The
last contribution involves integrals over the pinning potential
�obviously assuming nonoverlapping pinning potentials�,

�0 = �V�r���0�u + r��2�; �1 = �V�r���1�u + r��2� , �24�

�12 =
i

2
�V�r��0

��u + r��1�u + r�� + c.c. �25�

The constants in Eq. �22� are


1 =� dxdy��1�4 = 2.1126,


12 =� dxdy��0�2��1�2 = 
A/2 = 0.58. �26�

The minimization equations with respect to variational pa-
rameters of the trial functions c0 and c1 are

dfGL

dc0
� ah�− 1 + c0

2 + c1
2�c0 + c0�0 + c1�12 = 0, �27�

dfGL

dc1
� ��h − ah� +

ah
1


A
c1

2 + ahc0
2�c1 + c1�1 + c0�12 = 0.

�28�

The displacement of vortices u determines the transport cur-
rent, so that to find the critical current density, one has to
maximize the current when u runs over the unit cell �see Fig.
3�. This set of equations is solved numerically in two cases:
the � potential and rectangular pins. In particular it is instruc-
tive to solve the equations using perturbation theory in small
displacement u �linear elasticity theory�. Since the current
will be flowing along the y direction, the displacement vector
should be oriented in the x direction.

B. Location of vortices for the �-pinning array: Linear
elasticity theory

For simplicity let us consider first an array of identical
pinning centers each of which is described by the potential

V�r� = U�
a

��r − ra� . �29�

This is appropriate when the size �radius� of the pin w is
smaller than the coherence length �. The dimensionless pin-
ning strength parameter can be estimated by U=�w2� /Tc,
where ��Tc−Tc0 is potential well energy. In this case inte-
grals in Eqs. �24� and �25� are simply

�0 = U��0�− u��2, �1 = U��1�− u��2,

�12 =
i

2
U��0

��− u��1�− u� − �0�− u��1
��− u�� . �30�

We start from derivation of the linear elasticity of the pinned
vortex lattice in which the displacement �which is along the
x direction� is assumed to be small.

There is only one stable solution for ux=u=0:
c0=1 ,c1=0 �there is another unstable solution with c0=0�.
This is just the Abrikosov lattice configuration with zero
critical current �higher order corrections in ah involve 6th,
12th, etc., Landau levels, which are very small and well be-
yond our variational procedure�. Expanding functions �15�
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and �18� in small displacement u around this equilibrium
solution one obtains for densities Eq. �30� appearing in the
pinning energy,

�0 = U��0�− u��2 �
U

2h
��1�0��2u2 + O�u3� ,

�1 � U��1�0��2 + O�u� ,

�12 =
iU

2
��0

��− u��1�− u� − �0�− u��1
��− u��

= −
U

2�2h�1/2 ��1�0��2u + O�u2� , �31�

where ��1�0��2=3.77h.
To the leading nontrivial order therefore one obtains

c0=1+�0u2, c1=�1u. Substituting this into the minimization
equation �Eq. �27��, one obtains to order u2

ah�2�0u2 + �1
2u2� + �0 + �1u�12 = 0. �32�

Using Eq. �31�, one obtains

ah�2�0 + �1
2� +

U��1�0��2

2h
− �1

U��1�0��2

2�2h
= 0. �33�

Similarly the second minimization equation �Eq. �28�� to the
first order in u reads

h�1 + U��1�0��2�1 −
1

2
� 1

2h
U��1�0��2 = 0, �34�

determining the correction

�1 =
1

2
� 1

2h

U��1�0��2

U��1�0��2 + h
. �35�

Consequently the average persistent current density respon-
sible for the pinning force is

j =
ah


A

�2hc1 =
ah

2
A

U��1�0��2

U��1�0��2 + h
u . �36�

The Lorentz force on one vortex depends linearly on dis-
placement j=Ku, where the Labusch parameter is

K =
ah

2
A

3.77U

3.77U + 1
. �37�

This parameter enters various phenomenologically important
quantities such as surface impedance of the microwave
absorption.11

C. Beyond the elasticity theory: Critical current

Let us now turn to the calculation of the critical current. It
is natural to assume that above certain current density the
static solution loses its stability. The linear elasticity, which
breaks down well below this critical current density, is
reached �within a harmonic well depinning is actually impos-
sible and formally the critical current is infinite�. To estimate
the critical current, the minimization equations therefore
should be solved numerically. In Fig. 3�a� we show depen-
dence of the current on the displacement of vortices in the x
direction for different values of pinning strength U for
h=0.5 and t=0 �that is, for ah=0.25�. For small displacement
u the persistent current density rises linearly consistently
with perturbation theory. In addition it is clear that the cur-
rent vanishes when vortex stays right in the middle between
the pinning centers, that is, for u=a� /2. Therefore the maxi-
mal persistent current jc should exist at certain displacement
uc in between. The displacement uc weakly depends on pin-
ning strength decreasing as the pinning strength rises. In the
critical current one observes that at U�0.1 the critical cur-
rent is well approximated by

jc =
ah


A
U . �38�

For stronger pinning the vortex is hold tightly �confined� by
the pining center and jc diverges as in the linear elasticity
theory. For pinning centers of the order or larger than coher-
ent length � the model should be generalized. In addition the
shape of large pinning center might become important.

1

2

3

4

5

0.2 0.4 0.6 0.8 1.0 u

0.01

0.02

0.03

0.04

j

0.6 0.7 0.8 0.9 1.0
h

0.01

0.02

0.03

0.04

Jc

(b)

(a)

FIG. 3. �Color online� �a� Dependence of the dimensionless per-
sistent current on displacement for the delta pinning for different
pinning strengths �curve 1 U=0.05, curve 2 U=0.1, curve 3
U=0.2, curve 4 U=0.4, and curve 5 U=1�. �b� Dependence of the
maximal persistent current on the magnetic field for the delta
pinning for different values of pinning strengths
U=0.05,0.1,0.2,0.4,0.6,0.8 �from bottom to top�.
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D. Rectangular pinning center array

A commensurate array of rectangular artificial pinning
centers can be modeled using the following single pin poten-
tial:

V�r�

= �V0 for − wx/2 � x � wx/2 and − wy/2 � y � wy/2
0 otherwise.

�
�39�

In this case the integrals appearing in the pining term �Eqs.
�24� and �25��,

�0 = �
−wx/2

wx/2

dx�
−wy/2

wy/2

dy��0�u + r��2,

�1 = �
−wx/2

wx/2

dx�
−wy/2

wy/2

dy��1�u + r��2,

�12 =
i

2
�

−wx/2

wx/2

dx�
−wy/2

wy/2

dy�0
��u + r��1�u + r� + c.c.,

�40�

were performed numerically. The dependence of the current
on displacement for different aspect ratios r=wx /wy, pinning

areas S=wxwy, and the potential strength U is given in Fig. 4.
Magnetic field and temperature are fixed as before at
h=0.5, t=0, so that ah=0.25. The results are discussed
below.

V. DISCUSSION AND CONCLUSIONS

The model of the vortex crystal pinned by the periodic
array of inclusions at the matching magnetic field considered
here is remarkably simple and useful for theoretical analysis.
It allows us to study, from first principles, various general
properties of the vortex matter including critical current,
elasticity, and destruction of the vortex crystal. Dependence
of the dimensionless persistent current on the displacement
of the vortex lattice with respect to pins for the � pinning
was calculated analytically �see Fig. 3�a��. In order to ex-
press the results in physical units the dimensionless current
density must be multiplied by the depairing current density
Jd=cHc2 /2���2. At small pinning strength U the critical cur-
rent increases rapidly and saturates at large U �see Fig. 3�b��.
The shape of the pinning center also affects the critical cur-
rent when both the size of the pinning center �on the scale of
coherence length� and its strength are sufficiently large �see
Fig. 4�. The critical current is always largest for a more sym-
metric square pin �lines numbered 1 on Figs. 4�a� and 4�b��.
It is followed by a rectangular center with the long side par-

1

2

3

0.2 0.4 0.6 0.8 u

0.01

0.02

0.03

0.04

j

square

wx�wy�1�4

wx�wy�4

0.1 0.2 0.3 0.4 0.5 0.6 0.7 u

0.005

0.010

0.015

0.020

0.025

0.030

j

square

wx�wy�1�4

wx�wy�4

0.2 0.4 0.6 0.8 u

0.005

0.010

0.015

0.020

0.025

0.030

0.035

j

square

wx�wy�1�4

wx�wy�4

0.2 0.4 0.6 0.8 1.0 u

0.005

0.010

0.015

0.020

j

(b)

(a) (c)

(d)

FIG. 4. �Color online� �a� Dependence of the persistent current on displacement for the rectangular pinning centers for small area of the
pinning center and three different pinning strengths �curve 1 U=3, curve2 U=1, and curve 3 U=0.33�. The straight lines correspond to
elasticity theory �Eq. �37��. �b� Dependence of the persistent current on displacement for various shapes of pinning centers for fixed pinning
potential V0=3 and area wxwy =0.5. �c� Dependence of the persistent current on displacement for various shapes of pinning centers for fixed
pinning potential V0=1 and area wxwy =0.5. �d� Dependence of the persistent current on displacement for various shapes of pinning centers
for fixed pinning potential V0=0.33 and area wxwy =0.5.
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allel to the current �lines numbered 2 on Figs. 4�a� and 4�b��.
The rectangular pinning centers with the long side perpen-
dicular to the current �lines numbered 3 on Fig. 4�a�� have
always the lowest critical current. At small pinning potential
the difference is insignificant, as can be learnt from Figs. 4�c�
and 4�d�. The results for the smaller square pinning centers
are consistent with the �-function approximation, as can be
seen from the linear part of the dependence of the current on
displacement in Figs. 4�b� and 4�d�. The lines follow a
simple formula for the Labusch parameter �Eq. �38��. The
dependence of the largest persistent current, Jc, on the mag-
netic field H for the � pinning for various pinning strengths
is presented in Fig. 3�b�. It vanishes as �1−H /Hc2�3/2 in the
limit H→Hc2. A similar dependence was obtained for the
longitudinal �parallel to the magnetic field direction� critical
current in Ref. 12.

The physical picture of the persistent current in the pinned
state can be considered from two complementary angles.
From one point of view, the nonzero persistent current ap-
pears in the pinned state due to shift and deformation of the
vortex core, while from another point of view, the deforma-
tion is due to the pinning force creating the persistent cur-
rent. Vortex cores are no longer circular, as was observed in
numerical simulations by Priour and Fertig.10 The deforma-
tion of the vortex cores is observable by currently existing
scanning tunnel microscopy techniques.13

Most favorable conditions to look for the phenomena de-
scribed in this paper are the following. Thermal fluctuations
on the mesoscopic scale �not included in the calculation�

ought to be minimized since they lead to thermal depinning
of vortices at elevated temperatures. This means that for
strongly fluctuating materials such as high Tc cuprates the
temperature should be lower than the depinning temperature.
Pinning should be strong enough similar to the one achieved
in an array of artificial magnetic dots.

It is well known that a small deviation from the matching
magnetic field leads to a sharp decrease of the critical current
roughly to the level of an equivalent random pinning array.4

Therefore there exists a sharp peak in the critical current of a
small width �B. This is due to the fact that even for a small
deviation from the matching condition, interstitial vortices
�or vortex vacancies� appear and determine the reduced criti-
cal current. The current is still larger than that in the random
pinning array with the same number of pinning sites because
the interstitial vortices continue to move in the periodically
modulated environment created by the pinned set of the vor-
tex “channels.”14,15
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